Isoscalar Giant Monopole Resonance (ISGMR)

- Giant resonance: a collective excitation of the nucleus
- · ISGMR is the "breathing mode" of the nucleus; it expands and shrinks at a certain frequency
- Can calculate compressibility of nuclear matter from ISGMR $(K_{NM} = 231 \pm 5 \text{ MeV})$
- The normal method is to collide an alpha particle with a larger nucleus and thereby excite ISGMR

ISGMR with Unstable Nuclei

- A target can not be made out of unstable nuclei, so the role of beam and target is switched
- A beam of unstable nuclei is incident on a lithium-6 target (helium is impractical as it is a gas at room temperature)
- The ISGMR centroid energy is above the particle threshold and can decay by p, alpha

Experimental Setup

Cyclotron Texas A&M Institute

Isoscalar Giant Monopole Resonances in Unstable Nuclei

W. F. McGrew, Juniata College

Advisor: **Collaborators:**

Dr. D. H. Youngblood J. T. Button and Dr. Y.-W. Lui Texas A&M University

Scintillator Detector Layout

The detector consists of a layer of vertical plastic scintillator strips in front of a layer of horizontal strips.

By examining the layers in coincidence, the scattering angle of the particles can be determined.

A block scintillator behind catches the particles.

All scintillators are attached to a fiber optic cable that carries the signal to photomultiplier tubes.

A hole in the center of the detector (positioned at vertical strip 7, horizontal strip 9) allows the beam to pass through, along with other residual nuclei.

Faraday Cup

The cup consists of a thin layer of

aluminum to stop the beam, and

a much thicker laver of tantalum

to stop secondary decay particles.

Tests with Protons and Betas

The scintillation detector was tested both with a beam of protons scattering off a carbon-12 target and with a beta source

The beta results proved to be too close to the threshold of the PMTs to extract meaningful data

Attenuation

By comparing points symmetric about the center point v7 h9, the attenuation as a function of distance from the position of the event and the fiber optic cablescintillator strip connection could be ascertained

Attenuation varied

various strips

significantly between the

Relative Gain

Relative gain was calculated by comparing the average values of luminous intensity at points with the same angular position

v1	0.400351	h1	0.570794
v2	0.697348	h2	0.687817
v3	0.615323	h3	1.23333
v4	0.645465	h4	0.941256
v5	1	h5	1.147939
v6	0.936034	h6	2.006197
v7	1.10521	h7	1.849815
v8	1.177447	h8	1
v9	0.797938	h9	1.245181
v10	0.63286	h10	1.054053
v11	0.743524		
v12	0.481916		

Image courtesy of Jonathan Button

The cup will be contained in a

optical position sensor will allow

the position to be monitored.